
Grade 6 Math Circles

Week of 20th November

Matrices

Mathematicians have worked extensively with numbers, and have found ways of working with more

than just 1 number at a time. When working with word problems, system of equations, and linear

algebra, matrices offer mathematicians a way to describe more than one idea, problem, or quantity,

and use similar math to resolve problems. For example, take the following scenario

You have 10 blue balls and 4 red balls while your friend has 5 blue balls and 9 red balls

Like we do with many things, we can make a table representing this information

You Friend
Blue Balls 10 5
Red Balls 4 9

We can take the arrangement of numbers, and put them into a matrix! We do so by taking the

numbers in their exact same position, and enclosing them with a box[
10 5

4 9

]

Although this doesn’t seem very useful to us right now, we’ll quickly learn that matrices greatly

simplify certain problems.

Exercise 1
Suppose James tutors 6 grade nine students and 10 grade ten students and Sean has 10 grade

nine students and 7 grade ten students. Represent this information in a matrix.

Matrix Dimensions

Since matrices are mathematical objects, we need to understand their properties, and make sure they

follows specific rules. Dimensions of matrices are very important, and all matrix operations depend

on the dimension of the matrix. The dimension of a matrix is denoted “m × n”, where m is the
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number of rows and n is the number of columns. So, in our example above, we had a 2× 2 matrix.

In the example below, we have a 3× 2 matrix;

M =

1 2

3 4

5 6


︸ ︷︷ ︸
2 columns

}
3 rows

We call a matrix a square matrix if m = n.

Exercise 2
Determine the dimension of the following matrices

[
2

1

] [
3 2 3

−1 0 8

] 3 −1 6

4 0 0

1 3 0

 [
2 1

1 0

]

Matrix Operations

Just like with numbers, we can work with matrices using the same operations. To start, with addition

or subtraction, we simply add or subtract the matrix elements that are in the same sport. That is,

if we have two 2× 2 matrices A and B, A+B and A−B are computed as follows as follows

A+B =

[
a b

c d

]
+

[
e f

g h

]
=

[
a+ e b+ f

c+ g d+ h

]

A−B =

[
a b

c d

]
−

[
e f

g h

]
=

[
a− e b− f

c− g d− h

]
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Exercise 3
Compute the following matrix additions and subtractions

a)

[
2 1

−1 0

]
+

[
3 −1

4 3

]
=

b)

[
3 12

−1
2

1

]
−

[
1 7

−4 3

]
=

c)

[
1 0

−1 0

]
+

([
1 3

4 2

]
−

[
2 1

−1 0

])
=

Although we can multiply matrices themselves, in this lesson we’ll just talk about scalar multipli-

cation. First, we must understand what scalar means. A scalar is just a number, which means

that we are trying to multiply a matrix by a number. Scalar multiplication is an operation which

multiplies each element of the matrix by a number, as follows:

k

[
a b

c d

]
=

[
ka kb

kc kd

]

Exercise 4
Compute the following scalar multiplications

a) 10

[
2 1

2

2 1

]

b) 3

([
3 2

−1
2

1

]
−

[
1 7

−4 3

])

c) 0

[
1 −1

1 0

]

The transpose of a matrix is an operation which doesn’t change anything about the matrix other

than the dimension. When you transpose a matrix, you swap the rows and the column indices of the
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matrix element. For example,

A =

a b

c d

e f


AT =

[
a c e

b d f

]

Going back to our matrix elements, we have that when we transpose a matrix, (ai,j)
T = aj,i

Exercise 5
Determine AT

a) A =

1 1

2 3

0 1



b) A =

2 0 0 1

2 3 1 0

1 1 0 1


c) A =

[
1 0

2 3

]

Application of Matrices

Matrices are very closely related to vectors. In fact, a vector is just an n× 1 matrix.

[
a

b

]
[
c

d

]

Matrix-Matrix multiplication is a whole process, but Matrix-Vector multiplication is a bit more
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intuitive to understand. Say you are given a 2× 2 matrix A and a 2× 1 vector v⃗, then we can write

Av⃗ =

[
a b

c d

][
x

y

]
=

[
ax+ by

cx+ dy

]

This operation allows us to modify vectors with various transformations. Let us grab some matrices

and see what they do to our vectors. Let’s keep the arbitrary vector v⃗, and apply the following matrix

A =

[
1 0

0 1

]
=⇒ Av⃗ =

[
1 0

0 1

][
x

y

]
=

[
1 · x+ 0 · y
0 · x+ 1 · y

]
=

[
x

y

]

This matrix, A =

[
1 0

0 1

]
is called the identity matrix, I, and it acts like the number 1, as in I×A = A,

for any matrix A. Consider the next matrix

A =

[
a 0

0 b

]
=⇒ Av⃗ =

[
a 0

0 b

][
x

y

]
=

[
a · x+ 0 · y
0 · x+ b · y

]
=

[
ax

by

]

This matrix allows you to scale any vector’s components individually. We call this the scaling matrix.

Consider the matrix

A =

[
0 1

1 0

]
=⇒ Av⃗ =

[
0 1

1 0

][
x

y

]
=

[
0 · x+ 1 · y
1 · x+ 0 · y

]
=

[
y

x

]

This matrix takes your vector, and reflects it across the line y = x. It takes the x and y components,

and switches them. This is a new type of matrix, as it actually manipulates the position of the

components. Normally, when the matrix has elements along it’s diagonal, it behaves nicely when

multiplying, if not, it can change the vector drastically. Finally, we have our last matrix,

A =

[
0 −1

1 0

]
=⇒ Av⃗ =

[
0 −1

1 0

][
x

y

]
=

[
0 · x+ (−1) · y
1 · x+ 0 · y

]
=

[
−y

x

]
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This matrix actually rotates your vector 90o counter clockwise. Below is a diagram depicting the

matrix acting on the vector v⃗ =

[
2

2

]
.

The black vector is the original vector, and the red vector is the transformed vector. Notice that

Av⃗ =

[
0 −1

1 0

][
2

2

]

=

[
0 · 2 + (−1) · 2
1 · 2 + 0 · 2

]

=

[
−2

2

]

The math checks out with what we see geometrically with the vectors!

Area of Parallelogram

When we have two vectors, when we add them, we end up – visually – with a parallelogram. Recall

how we add two vectors [
a+ c

b+ d

]
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As we learnt in the previous lesson, we can add either vector tip to tail. When we do this, we see

a parallelogram. In fact, we can always describe a parallelogram using a matrix! We take the two

sides of the parallelogram, which are represented by two vectors, say p⃗ and q⃗,

p⃗

q⃗

We can put both p⃗ and q⃗ into a matrix, like so

[
p⃗ q⃗

]
=

[
a c

b d

]

Once we do this, it’s actually possible to find the area of the parallelogram! To do so, we must find

the absolute value of the determinant of this matrix. The determinant of a 2 × 2 matrix an be

found as follows

det

([
a c

b d

])
= ad− bc

Therefore, since we take the absolute value, we have that

Area =

∣∣∣∣∣det
([

a c

b d

])∣∣∣∣∣
We can actually prove this geometrically, first, we’ll draw a diagram

Image retrieved from ProofWiki
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The total area of the square is Atotal = (a+ b)(c+ d). Since we only want the area shaded in red, we

have to subtract the two squares and four triangles. The squares each have area bc, and the triangle

have areas ac
2
and bd

2
. Thus, we have that

Areared = (a+ b)(c+ d)−
(ac
2

)
−
(ac
2

)
−
(
bd

2

)
−
(
bd

2

)
− bc− bc

= ad− bc

Which is exactly the definition of the determinant of the two vectors!

Example 1

Say we are given the parallelogram defined via the two vectors p⃗ =

[
1

2

]
, and q⃗ =

[
3

1

]

[
1

2

]
[
3

1

]

Thus, the area of the parallelogram is therefore

Area =

∣∣∣∣∣det
([

a c

b d

])∣∣∣∣∣ =
∣∣∣∣∣det

([
1 2

3 1

])∣∣∣∣∣
= |1 · 1− 2 · 3|

= |1− 6|

= |−5|

= 5 units2
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Exercise 6
Determine the area of the parallelograms defined by the following vectors

a) p⃗ =

[
1

2

]
and q⃗ =

[
2

1

]

b) p⃗ =

[
1/2

3

]
and q⃗ =

[
1

0

]

c) p⃗ =

[
10

3

]
and q⃗ =

[
−1

1/5

]

d) p⃗ =

[
1

0

]
and q⃗ =

[
0

1

]
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